

 ANL/MCS-TM-346

Detecting Silent Data Corruption for Extreme-Scale
Application through Data Mining

Mathematics and Computer Science Division

 About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago
Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main
facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439.
For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after
1991 and a growing number of pre-1991 documents are available free via
DOE’s SciTech Connect (http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public
from the National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information
Service 5301 Shawnee Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors
from the Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne,
LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and
opinions of document authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/MCS-TM-346

	
	
	
prepared by:
Leonardo Bautista-Gomez
Franck Cappello

Argonne National Laboratory

October 31, 2014

Detecting Silent Data Corruption for Extreme-Scale Applications
through Data Mining

Detecting Silent Data Corruption for
Extreme-Scale Applications through Data Mining

Leonardo Bautista-Gomez and Franck Cappello
Argonne National Laboratory

October 20, 2014

Abstract
Supercomputers allow scientists to study natural phenomena by means

of computer simulations. Next-generation machines are expected to have
more components and, at the same time, consume several times less energy
per operation. These trends are pushing supercomputer construction to
the limits of miniaturization and energy-saving strategies. Consequently,
the number of soft errors is expected to increase dramatically in the coming
years. While mechanisms are in place to correct or at least detect some
soft errors, a significant percentage of those errors pass unnoticed by
the hardware. Such silent errors are extremely damaging because they
can make applications silently produce wrong results. In this work we
propose a technique that leverages certain properties of high-performance
computing applications in order to detect silent errors at the application
level. Our technique detects corruption solely based on the behavior of the
application datasets and is completely application-agnostic. We propose
multiple corruption detectors, and we couple them to work together in a
fashion transparent to the user. We demonstrate that this strategy can
detect the majority of the corruptions, while incurring negligible overhead.
We show that with the help of these detectors, applications can have up
to 80% of coverage against data corruption.

1 Introduction
High-performance computing (HPC) is changing the way scientists make discover-
ies. Natural phenomena can be modeled as scientific codes and studied by means
of computational simulations. Science applications require ever-larger machines
to solve larger problems with higher accuracy. While future machines promise
to tackle those complex science problems, they are also raising new challenges.
Both the transistor size and the energy consumption of future systems must be
significantly reduced, steps that might dramatically impact the soft error rate
(SER) according to recent studies [9, 3].

Random memory access (RAM) devices have been intensively protected
against soft errors through error-correcting codes (ECCs) because they have the

1

largest share of the susceptible surface on high-end computers. However, not all
parts of the system are ECC protected: in particular, logic units and registers
inside the processing units are usually not ECC protected because of the space,
time and energy cost that ECC requires to work at low level. Historically, the SER
of central processing units was minimized through a technique called radiation
hardening, which consists of increasing the capacitance of circuit nodes in order
to increase the critical charge needed to change the logic level. Unfortunately,
this technique involves increasing either the size or the energy consumption of
the components, which might be prohibitively expensive at extreme scale. Thus,
a non-negligible percentage of soft errors could pass undetected by the hardware,
corrupting the numerical data of scientific applications. This is called silent data
corruption (SDC).

In this work, we state that the datasets produced by HPC applications have
characteristics that reflect the properties of the underlining physical phenomena
that those applications seek to model. In particular, we propose to leverage the
spatial and temporal behavior of HPC datasets in order to predict the normal
evolution for the datasets. Whit this approach, SDCs will push the corrupted
data point out of the expected range of normal values, making it an outlier.

The contributions of this work can be summarized as follows:

• We study the propagation of corruption on HPC applications, including
the transfer to other processes.

• We propose four SDC detectors that detect anomalies based on the spatial
and temporal properties of the datasets.

• We propose a fuzzy logic module that integrates the four detectors and
provides the level of anomaly suspicion to the user.

• We implement the four detectors and optimize them to minimize the
memory footprint of our technique.

• We evaluate the detection capabilities of our combined detectors and show
their with multiple HPC applications.

• We demonstrated that with the help of these detectors, applications can
have up to 80% of coverage against data corruption.

The rest of this article is organized as follows. Section 2 presents the related
work. Section 3 introduces our proposed detectors and the fuzzy logic module.
Section 4 shows our evaluation, including the corruption propagation analysis
and the detectors performance. Section 5 concludes this work and present some
ideas for future work.

2 Related Work
The problem of data corruption for extreme-scale computers has been the target
of numerous studies. They can be classified in three groups depending on their

2

level of generality, that is, how easily a technique can be applied to a wide
spectrum of HPC applications. They also have different cost in time, space, and
energy. An ideal SDC detection technique should be as general as possible, while
incurring a minimum cost over the application.

2.1 Hardware-Level Detection
The most general method is to try to solve the problem of data corruption at the
hardware level. This method is extremely general because applications do not
require any adaptation to benefit from such detectors. Considerable literature
exists on soft errors rates [11, 12, 3, 4] and detection techniques at the hardware
level [10, 6]. Implementing these techniques efficiently is difficult, however, under
the strict constraints of extreme-scale computing (e.g., low power consumption).
Even if such requirements could be met, it is unclear whether the market will
drive the technologies in this direction.

2.2 Process Replication
Process replication has been used for many years to guarantee correctness in
critical systems and its application to HPC systems has been studied Fiala et al.,
for example, have proposed using double-redundant computation to detect SDC
by comparing the messages transmitted between the replicated processes [7].
The authors also suggest employing triple redundancy to enable data correction
using an voting scheme. This approach is general in that applications need little
adaptation to benefit from double or triple redundancy. Unfortunately, double-
and triple-redundant computation always imposes large overheads, since the
number of hardware resources required double or triple. In addition, the cost of
energy consumption is heavily increased when using full replication, not only
because of the extra computation, but also because of the extra communications.

2.3 Algorithm-Based Fault Tolerance
A promising technique against data corruption is algorithm-based fault tolerance
(ABFT) [8]. This technique uses extra checksums in linear algebra kernels
in order to detect and correct corruptions [8, 5]. However, ABFT has been
implemented only on some linear algebra kernels, which is only a subset of
the vast spectrum of computational kernels. Moreover, this technique is not
general, since each algorithm needs to be adapted for ABFT. Furthermore, even
applications that employ only ABFT-protected kernels could fail to detect SDCs
if the corrupted data lies outside the ABFT-protected regions.

2.4 Approximate Computing
Another type of SDC detection is based on the idea of approximate computing, in
which a computing kernel is paired with a cheaper and less accurate kernel that
will produce close enough results that can be compared with those generated

3

by the main computational kernel [2]. This detection mechanism has shown
promising results but is still not general enough, since each application will need
to manually be complemented with the required approximate computing kernels.
Furthermore, complex applications will need to adapt multiple different kernels
to offer good coverage.

3 Unsupervised Anomaly Detection
In this work we propose to use data mining to detect SDC during runtime in
extreme-scale scientific applications. We believe that a strategy based on data
analytics is an interesting path to explore for several reasons. First, such an
approach is completely independent of the underlying algorithm and therefore
dramatically more general than algorithm-based techniques. Second, one can
develop lightweight data-monitoring techniques that impose a low overhead on
the application compared with that from extremely expensive techniques such
as double and triple redundancy. Third, data monitoring and outlier detection
can be offered by the runtime in a fashion transparent to the user.

Our main idea is to monitor the application datasets during runtime in order
to find behavior patterns and therefore raise alerts when some data points go
outside the expected range of coherent values. Such inconsistent data points
are called outliers. This anomaly detection strategy has been widely used in
multiple domains such as medical analysis. In some domains, large banks of
data, including normal and abnormal cases, are available to train the anomaly
detectors. The use of such labeled data is called supervised anomaly detection.
In the context of large HPC applications, we propose an unsupervised anomaly
detection given that in most cases users do not have a large bank of normal and
corrupted datasets for training our detectors.

3.1 Distribution Anomaly Detector
The first detector we propose is a detector that simply finds the probability
density function (PDF) of the target dataset γ (gamma) at time step tk. Then,
based on the current PDF and the evolution of the PDFs at previous time
steps, it gives a prediction of the possible PDF for the next time step using
a low-order approximation. We call this detector a γ − detector. (We use a
low-order approximation in order to minimize the computation work; we plan
to work on the accuracy of our predictions later.) We quantify the efficacy of
an SDC detector using two measures: its recall and its precision. The recall is
given by Equation 1 and the precision by Equation 2.

Recall = TruePositives

TruePositives+ FalseNegatives
(1)

Precision = TruePositives

TruePositives+ FalsePositives
(2)

4

In this work, we show that this first-order approximation is enough to
guarantee a large coverage of the most significant corruptions and that it succeeds
in keeping the computation overhead negligible. Any observed data point located
outside the boundaries of the predicted PDF will be treated as an outlier. For
instance, let us imagine a dataset evolving during the execution and monitored
by our detector. The detector will analyze the PDF at each time step and predict
an expected range of values for the next time step. As shown in Figure 1(a), the
detector predicts that normal values should be inside the segment [4.000, 4.050].
A data point with the value 4.0312495 is inside that range. If that data point
was to be corrupted in the one of the 16 most significant bits of the IEEE floating
point representation, the value would automatically move outside the expected
range of normal values and it will be detected as an outlier. Now, let us imagine
that our detector could give a more accurate prediction, giving [4.03115; 4.03185]
as the interval of normal values. In such case, any corruption in the 24 most
significant bits will push the point outside the new and narrower interval. As
we can see, the accuracy of the prediction has a direct impact on the detection
recall of our detectors.

Another point that should be taken into account while measuring the detection
capabilities of these detectors, is that not all the bits in the IEEE floating
point representation need to be covered. For instance, a corruption in the
most significant bits are likely to generate numerical instability, inducing the
application to crash. Such soft errors might be silent to the hardware but not to
the application. On the other hand, corruption happening in the least significant
bits of the mantissa might produce deviations that are lower than the allowed
error of the application, hence, they are negligible. Coming back to the example
of our second detector, if we neglected the 4 most significant bits (numerical
instability) and the 4 least significant bits (negligible error), we could say that
the detector has a coverage of 20 bits out of 24 (83% coverage).

(a) Anomaly detection based on prediction (b) Previous step data approximation

Figure 1: Approximate prediction system of the detectors.

3.2 Spatial Anomaly Detector
The second type of detector that we propose is a detector that analyzes the
space variations of the dataset. This detector will compute at each time step tk

5

a δ (delta) field, where δ is computed as shown in Equation 3 for a 2D domain.

δk
(i,j) = γk

(i,j) − γ
k
(g,h) where g ∈ {i− 1; i; i+ 1} ∧ h ∈ {j − 1; j; j + 1} (3)

This computation can take into account neighbors in multiple dimensions
or in a single dimension, as well as many neighbor points (e.g., 5-point stencil)
depending on the preferences of the user. Then, the detector will produce and
store the PDF of the δ field for the current time step tk and predict a PDF for
the time step tk+1. Similarly to the previous case, any point showing a δk+1

(i,j)
outside the expected range of normal values will be treated as an outlier. We
call this detector a δ − detector.

3.3 Temporal Anomaly Detector
The third type of detector that we have developed is based on the temporal
evolution of a dataset. More precisely, for each data point we compute the
difference ε (epsilon) as shown in Equation 4.

εk(i,j) = γk
(i,j) − γ

k−1
(i,j) (4)

Then, similarly to the other detectors, we compute the distribution of ε at
time step tk, and we compute a low-order approximation of the next PDF of ε,
so that any εk+1

(i,j) outside the predicted PDF is treated as an outlier. However,
computing εk requires saving γk−1 in memory, which involves a large space
overhead. To avoid such memory overhead, we sacrifice some accuracy by
indexing the PDF (256-bins), so that instead of keeping xk−1

(i,j) for each point of
the domain, we keep only a 1-byte index to the nearest value to γk

(i,j) − 1 in
the 256-bins PDF, as shown in Figure 1(b). In this way, we reduce the memory
footprint of such detector from 4 or 8 bytes (for single or double precision,
respectively) to only 1 byte. We call this detector an ε− detector.

3.4 Spatiotemporal Anomaly Detector
The fourth detector that we propose in this work is a spatiotemporal detector
that computes the time evolution ζ (zeta) of the δ field computed by δ−detector,
as shown in Equation 5.

ζk
(i,j) = δk

(i,j) − δ
k−1
(i,j) (5)

Computing the time gradient of the space gradient gives us an idea of when
a dataset increases or decreases its level of turbulence. Similarly to the temporal
anomaly detector, one must keep δ values of the previous time step in order
to compute the time difference. Thus, we employ the same indexing technique
(loosing some accuracy) to reduce the overhead from 4 or 8 bytes to only 1 byte.
We call this detector a ζ − detector.

6

3.5 Fuzzy Logic
We couple the four SDC detectors through a fuzzy logic module. In contrast
with a binary detector that would return True or False to express whether an
outlier was detected in the application datasets, fuzzy logic allows us to express
how much a data point is an outlier of the dataset. We note that fuzzy logic
should not be mistaken with classic probabilities. A probability expresses (in
this case) the uncertainty about a data point being an outlier or not, whereas
fuzzy logic expresses the degree to which a data point does not belong to a
dataset: there is no uncertainty about this degree.

Given that all four detectors are based on a PDF, one can easily quantify
how far an outlier is from the prediction and can normalize this deviation for
all four detectors. Then, for each data point we can compute an accumulated
outlier score including the four detectors. This enables users to take different
actions for different levels of anomalies. For instance, a user could choose to
ignore detections with a very low degree of deviation and decide to restart from
the last checkpoint in the case of an outlier presenting large deviations. In this
way, fuzzy logic provides users with more information, thus empowering them to
take more accurate actions in the presence of corruption suspicion.

Another important feature that we propose together with this fuzzy detector
is the capability to tune the fuzzy logic module, in order to give different weight
to the detectors. Although the default method will give same weight to all
four detectors, users may want to give more importance to a particular type
of detector depending on the application or the input conditions. For instance,
when a user increases the time-stepping resolution of a simulation, it is normal
to expect lower changes from a time step to another. Therefore it makes sense
to give more weight to the ε− detector in such a configuration. The same idea
can applied to the δ− detector when changing the scale and the space resolution
of a simulation. We note that by weighting the different detectors, users can
completely remove a detector from the system. For instance, one could remove
the ζ − detector and the ε− detector in order to minimize the memory overhead.

4 Evaluation
To evaluate our proposed detectors, we studied one of the most challenging
applications in this context: a turbulent flow in a 3D duct modeled as a large eddy
simulation using a two-stage time-differencing scheme based on higher accuracy
for compressible gas using Navier-Stokes equations. This model of turbulence
is well known in the scientific community and is widely used in computational
fluid dynamics (CFD). It represents a large set of HPC applications, ranging
from weather prediction to aerospace engineering. Turbulence simulations are
well known to have a chaotic and hard-to-predict behavior. For this simulation,
the 3D duct is divided in N sections along the length (x axis) of the duct, where
N corresponds to the number of MPI ranks in the simulation.

We implement all the proposed detectors inside the FTI library [1], so that

7

applications need only to define the datasets to protect; all the detection work
will be done automatically in a transparent fashion. Users can define the SDC
checking frequency using a configuration file. Higher frequency decreases the
detection latency, and lower frequency minimizes the computational overhead.
The evaluation is divided in several subsections that look at different aspects of
data corruption and SDC detection.

(a) Vorticity in turbulent fluid (b) Bit-flip injection in grid point 40X40

Figure 2: Study of corruption on a turbulence code for compressible gas

4.1 Corruption Propagation
We start by analyzing how corruption propagates in classic HPC applications,
such as the CFD code mentioned above. Most CFD applications produce vorticity
plots that show the level of turbulence of the fluid. For instance, Figure 2(a)
shows the vorticity of the fluid on a 2D cut of the 3D duct, aggregating data
from all MPI processes in the simulation (total length of the duct). However, the
vorticity is computed from the velocity fields in the three axes (for visualization)
and is never stored in a variable. Therefore, an error deviation observed in the
vorticity plot is likely to be the consequence of a corruption happening in one of
the velocity fields.

Figure 2(b) shows the velocity field following the x axis (u1). As we can see,
velocity changes close to the walls of duct as a result of the viscosity of the fluid.
In this run, we injected a bit-flip (grid point 40X40) in the 24th bit position,
the first bit of the exponent. This corruption is barely visible as a tiny white dot
in the middle of a red area. Yet this corruption will generate large perturbations
that will propagate across the domain, reaching other MPI ranks and corrupting
the large majority of the domain.

To study the propagation of corruption across after an SDC, we performed
the following experiment. First, we launched a turbulent flow simulation starting
from the initial conditions and let it run for 15,000 time steps, while checkpointing
every 500 time steps, with the last checkpoint taken at iteration 15,000. The
purpose was to let the gas reach a relatively high level of turbulence. Then, we
restarted the execution from the last checkpoint (i.e., time step 15,000), and we
recorded the datasets of the execution at each time step for a corruption-free
execution. We repeated the same corruption-free execution several times and

8

confirmed that for each time step, all datasets are identical between executions.
Then, we repeated the same experiment (restarting from time step 15,000) but
this time injecting one bit-flip at bit position p for p in 10, 12, 14, 16, 18, 20, 22,
24. For each experiment we injected the bit-flip in the first twenty time steps
(i.e., before time step 15,020) and let it run for 500 iterations.

(a) Error propagation of 24th bit corruption (b) Maximum deviation after corruption

Figure 3: Error propagation in turbulent flow simulation

After all the corruption experiments were done, we computed for each ex-
periment and for each time step the difference between the corrupted dataset
and the corruption-free dataset. Figure 3(a) plots this deviation a hundred time
steps after corrupting the 24th bit of the grid point 40X40. We use a logarithmic
color scale to show the magnitude of the deviation in the different regions of the
domain. For this simulation, we set the error tolerance to 10−6, meaning that
any error lower than 10−6 will be ignored. As we can observe, in only a hundred
iterations the corruption has already propagated across the entire domain, and
it shows a particularly high deviation in a region with a wave shape that has
as origin the corrupted grid point. Although the origin of the corruption was
in the grid point 40X40, the fluid has moved in those hundred time steps, and
the corruption wave has as epicenter about 20 grid points to the right, which
happens to be located in an MPI rank other than the one where the corruption
was originally injected.

Looking at the following hundred time steps, we noticed that the high
deviation wave bounces in the walls of the duct and continues propagating in
other directions. We plotted similar figures for each time step of each corruption
experiment, but here we show only one for brevity. To get an idea of how
deviations behave for different corruption levels, we plotted the maximum
deviation at each time step for all the corruption experiments. The results are
shown in Figure 3(b). As we can see, during the first ten time steps or so, there
is no corrupted data. When the bit-flip is injected, we observe a sudden jump
with a magnitude exponentially proportional to the bit-flip position, which is
consistent with the floating-point representation. In addition, we notice that
immediately after the corruption jump, the deviation starts to decrease. This
decrease is due to a smoothening effect that takes place when the noncorrupted
data interacts with the corrupted data. However, the same influence can go in
the other direction. For instance, when the corruption wave bounces in the wall

9

of the duct, it interacts with the other part of the wave that is just arriving
to the wall, generating a corruption amplification effect, which is what we see
happening after time step 15,150. Finally, the deviation stabilizes around time
step 15,400 and remains stable until the end of the execution.

4.2 Data Distribution of the Detectors
Having a better idea of how corruption propagates, we move to the next part
of our evaluation, namely, the study of the PDF of the different detectors (see
Section 3). We first analyze the PDF of each detector at a given time step k for
a corruption-free execution. The goal of this study is to visualize the distribution
for each detector, compare with previous observations, and predict the possible
detection impact of each detector.

(a) γ − detector (b) δ − detector

Figure 4: Probability density function of gamma and delta detectors.

The first detector we study is the γ − detector. This detector is simply the
PDF of the target dataset. Figure 4(a) shows the PDF for the u1 velocity field.
As we can see, most of the values are higher than 1.0, which is consistent with
Figure 2(b). A smaller percentage of the dataset shows values under 1.0, which
corresponds to the areas close to the duct walls where the speed decreases. The
shown distribution uses 256 bins in single precision, for a total size of 1 KB of
data. From the plot we notice that the data is relatively well distributed across
the spectrum of values and that none of the bins holds more than 2% of the
data points. Given the statistical dispersion of the data and the wide interdecile
range (IDR), the γ − detector is not expected to perform well for this dataset.

The second detector we analyze is the δ − detector. The PDF produced by
the δ field is shown in Figure 4(b). We can see a clear Gaussian distribution
with 0 as the expectation and a low variance. We note that the dispersion of
the δ distribution is low and its IDR is several times smaller than the IDR of
the γ distribution. Hence, it is more sensitive to data corruption. Thus, for
this particular dataset, the δ − detector is expected to perform better than the
γ−detector, yet some rare anomalies might be detected by the latter and ignored
by the former.

The PDF produced by the ε− detector also shows a Gaussian distribution,
although with a slightly different shape from that of the δ distribution. Again,

10

the expectation is 0.0, and the variance is low. We note that the ε IDR is about
one order of magnitude smaller than the IDR of the δ distribution. This is due to
the high time resolution, low space resolution, and the particular characteristics
of the fluid (e.g., viscosity). Other executions of a similar CFD simulation could
produce much different distributions by simply changing some input parameters.

(a) ε− detector (b) ζ − detector

Figure 5: Probability density function of gamma and delta detectors.

The ζ − detector also produces a Gaussian distribution. The IDR is within
the same order of magnitude but is narrower than previous cases. Thus, for this
dataset it is expected to show the highest recall among all four detectors.

4.3 Clustering and Outlier Detection
Now that we have a clear idea of the distribution of each detector, let us see how
this can be used to detect SDC. We run the simulation together with the four
detectors, which are checking for data corruption at every time step. Then, at
time step tk, we inject multiple bit-flips in different points of the domain and
at different bit positions for each injection. Just after the bit-flips have been
injected and the detectors have analyzed the datasets, we plot the detectors’
state as a couple of two-dimensional clouds of points where it is easy to visualise
the outliers. We color each point depending on the level of corruption of each
particular point (dark blue means no corruption).

(a) γ − δ − cluster (b) ε− ζ − cluster

Figure 6: Outlier detection with multiple detectors.

11

As Figure 6(a) indicates, corruptions in the high bits of the mantissa (i.e.,
bits 18 and 20) generate clear outliers that are at a large distance from the
γ − δ − cluster of noncorrupted points. We note that some corruptions are
detected multiple times, once when analyzing the corrupted point and more
when analyzing the points around the corrupted one. For instance, in Figure 6(a)
we see two corruptions in the upper-right part of the plot. These correspond to
the actual corrupted data points because both δ and γ are distant from the cluster.
In the bottom part of the plot, we observe two corruptions complementing those
two outliers. These are neighbors that have noncorrupted data (normal γ) but
that do see a strange distance (abnormal δ) from their corrupted neighbor. This
interesting feature of the detection mechanism can help increase the confidence
in a given outlier detection. However, we see that this does not help increase
the detection of less critical corruptions (i.e., bits 16 and 14). Such corruptions
are located within the γ − δ − cluster and are not detected as outliers by either
of these two detectors.

Fortunately, the ε − ζ − cluster does a much better job, positioning both
corruptions outside the cluster. In fact, the corruptions on the high bits of
the mantissa generate such a large deviation that the cluster looks as a pale
blue dot, as shown in Figure 6(b). We also observe the same multiple-detection
phenomena as in the previous case. The reason is that the ζ − detector is also
based on a spatial analysis, making neighbor points capable of detecting the
corruption. Thanks to the visualization of the detectors’ distribution as clusters,
one can now easily understand the fuzzy logic module and the scoring system.
The distance from the point to the cluster quantifies the level of deviation for
each detector. Combining the weighted score of the four detectors gives the final
outlier score that is reported to the user.

4.4 Detection Recall
The next step in our evaluation is to inject bit-flips during runtime and see
how our detectors react. Thus, we run an experiment in which corruptions are
injected at random points in time, at random positions in the domain and at
random bit positions. All injections are logged in order to compare the injections
and the detections with a post-mortem script. For the first experiments we use
the already familiar turbulent flow code. We set the allowed error to 10−5 so
corruptions haapening in the last 4 bits of the mantissa can be neglected (see
Figure 3(b)). For fairness, we do not take into account corruptions on the 8
most significant bits because, although our detectors can detect them, those
corruptions make the application unstable and crashes. As shown in Figure ??
our detectors can notice perturbations as small as those affecting bit 15th of the
floating point representation. Thus, this technique detects about 50% of the
vulnerable bits, giving an overall coverage of about 68.75%.

We repeat the same experiments with a cosmology application: HACC.
HACC is an n-body simulation that is helping scientists understand the role
of black matter in the universe. The application produce results that are then
studied using statistical tools, which makes the lose of precision of a few particles

12

(a) Detection recall for CFD miniapp (b) Detection recall for HACC application

Figure 7: Detection recall study on HPC applications.

less dramatic. Due to this reason, we set the negligible corruption treshold to bit
position 8th. For the same reason, the application is in general more stable and
even corruptions on the exponent bits will not produce a crash. On HACC, our
detector is able to notice perturbations in 14 out the 20 remaining vulnerable
bits, which is a recall of 70%. This translates into an overall coverage of 80%.

5 Conclusion
In this work we have studied some of the properties of HPC applications and their
datasets. Based on these properties, we proposed several SDC detectors that
scrub the datasets of an application and generate the next expected distribution
in order to detect anomalies. To integrate all the detectors together, we proposed
a fuzzy logic module that gives detailed information to the user about the detected
anomalies. We implemented these lightweight algorithms and minimized their
memory footprint using an indexing strategy.

We evaluated our proposed scheme with a turbulent flow simulation based on
Navier-Stokes equations. We studied the propagation of corruption across the
entire domain and for different levels of corruption. We analyzed the distributions
generated by our four detectors and demonstrated their detection accuracy using
a cluster visualization technique. The results show that our technique can detect
the majority of corruptions while incurring only negligible overhead on the
scientific application. We demonstrated that with the help of these detectors,
applications can have up to 80% of coverage against data corruption.

As future work, we would like to improve the prediction of the PDF evolution
using a Kalman filter. We also plan to implement subregion decomposition
inside each MPI rank, in order to increase further the detection recall of our
SDC detector.

Acknowledgments
This material is based upon work supported by the U.S. Department of Energy
Office of Science, under contract number DE-AC02-06CH11357.

13

References
[1] L. A. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama,

and S. Matsuoka. FTI: High performance fault tolerance interface for hybrid
systems. In SC, page 32. ACM, 2011.

[2] A. R. Benson, S. Schmit, and R. Schreiber. Silent error detection in nu-
merical time-stepping schemes. International Journal of High Performance
Computing Applications, page 1094342014532297, 2014.

[3] S. Borkar. Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation. IEEE Micro, 25:10–16,
November 2005.

[4] A. Cataldo. Mosys, iroc target ic error protection, 2002.

[5] Z. Chen. Online-ABFT: an online algorithm based fault tolerance scheme
for soft error detection in iterative methods. In Proceedings of the 18th ACM
SIGPLAN symposium on Principles and Practice of Parallel Programming,
pages 167–176. ACM, 2013.

[6] T. J. Dell. A white paper on the benefits of Chipkill-correct ECC for PC
server main memory. IBM Microelectronics Division, pages 1–23, 1997.

[7] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell. Detection and correction of silent data corruption for large-
scale high-performance computing. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, page 78. IEEE Computer Society Press, 2012.

[8] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix
operations. Computers, IEEE Transactions on, 100(6):518–528, 1984.

[9] D. Li, J. S. Vetter, and W. Yu. Classifying soft error vulnerabilities in
extreme-scale scientific applications using a binary instrumentation tool. In
Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, page 57. IEEE Computer Society
Press, 2012.

[10] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft error problem:
An architectural perspective. In 11th International Symposium on High-
Performance Computer Architecture., pages 243–247. IEEE, 2005.

[11] E. Normand. Single event upset at ground level. IEEE Transactions on
Nuclear Science, 43(6):2742–2750, 1996.

[12] T. Semiconductor. Soft errors in electronic memory - a white paper, 2004.

14

